124 research outputs found

    An Evaluation of The Host Response to An Interspinous Process Device Based on A Series of Spine Explants: Device for Intervertebral Assisted Motion (DIAM®)

    Get PDF
    Background: The objective of this study was to evaluate the host response to an interspinous process device [Device for Intervertebral Assisted Motion (DIAM®)] based on a series of nine spine explants with a mean post-operative explant time of 35 months. Methods: Explanted periprosthetic tissues were processed for histology and stained with H&E, Wright-Giemsa stain, and Oil Red O. Brightfield and polarized light microscopy were used to evaluate the host response to the device and the resultant particulate debris. The host response was graded per ASTM F981-04. Quantitative histomorphometry was used to characterize particle size, shape, and area per ASTM F1877-05. The presence or absence of bone resorption was also evaluated when bony tissue samples were provided. Results: Periprosthetic tissues demonstrated a non-specific foreign body response composed of macrophages and foreign body giant cells to the DIAM® device in most of the accessions. The foreign body reaction was not the stated reason for explantation in any of the accessions. Per ASTM F981-04, a “very slight” to “mild” to “moderate” chronic inflammatory response was observed to the biomaterials and particulate, and this varied by tissue sample and accession. Particle sizes were consistent amongst the explant patients with mean particle size on the order of several microns. Osteolysis, signs of toxicity, necrosis, an immune response, and/or device related infection were not observed. Conclusions: Cyclic loading of the spine can cause wear in dynamic stabilization systems such as DIAM®. The fabric nature of the DIAM® device’s polyethylene terephthalate jacket coupled with the generation of polymeric particulate debris predisposes the device to a foreign body reaction consisting of macrophages and foreign body giant cells. Although not all patients are aware of symptoms associated with a foreign body reaction to a deeply implanted device, surgeons should be aware of the host response to this device

    REHABILITATING BANKRUPTCY CODE SECTION 506(C): SHOULD THIRD PARTY CLAIMANTS HAVE INDEPENDENT STANDING?

    Get PDF

    On the Complexity of Nucleolus Computation for Bipartite b-Matching Games

    Full text link
    We explore the complexity of nucleolus computation in b-matching games on bipartite graphs. We show that computing the nucleolus of a simple b-matching game is NP-hard even on bipartite graphs of maximum degree 7. We complement this with partial positive results in the special case where b values are bounded by 2. In particular, we describe an efficient algorithm when a constant number of vertices satisfy b(v) = 2 as well as an efficient algorithm for computing the non-simple b-matching nucleolus when b = 2

    Structure in Stable Matching Problems

    Get PDF
    In this thesis we provide two contributions to the study of structure in stable matching problems. The first contribution is a short new proof for the integrality of Rothblum’s linear description of the convex hull of incidence vectors of stable matchings in bipartite graphs. The key feature of our proof is to show that extreme points of the formulation must have a 0, 1-component. The second contribution is a computer search procedure for instances of cyclic stable matching problems with three genders as proposed by Knuth. We provide sufficient conditions for the existence of a stable matching in this context. We also investigate bijections of the problem instance vertex set to itself which preserve the set of stable matchings (up to permutation). Such bijections define “symmetric” problem instances. We study this notion of symmetry, and use it to cut down on the number of problem instances in our search. We implemented our proposed computational procedure in Java and end with a discussion of the results running computational experiments using our code on problem instances of size 5

    Computing the Nucleolus of Matching and b-Matching Games

    Get PDF
    In the classical weighted matching problem the optimizer is given a graph with edge weights and their goal is to find a matching which maximizes the sum of the weights of edges in the matching. It is typically assumed in this process that the optimizer has unilateral control over the decision to take each edge. Where cooperative game theory intersects combinatorial optimization this assumption is subverted. In a cooperative matching game each vertex of the graph is controlled by a distinct player, and an edge can only be taken into a matching with the cooperation of the players at each of its vertices. One can think of the weight of an edge as representing the value the players of that edge generate by collaborating in partnership. In this setting the question is more than simply can we find an optimal matching, as in the classic matching problem, but also how should the players share the total value of the matching amongst themselves. The players should share the value they generate in a way that fairly respects the contributions of each player, and which encourages as well as possible the stable participation of every player in the network. Cooperative game theory formulates such fair distributions of wealth as solution concepts. One classical and beautiful solution concept is the nucleolus. Intuitively the nucleolus distributes value so that the worst off groups of players are as satisfied as possible, and subject to that the second worst off groups, and so on. Here we think of satisfaction as the difference between how much value the players were distributed versus how much they could have generated on their own had they seceded from the grand coalition. This thesis studies the nucleolus of matching games, and their generalization to b-matching games where each player can take on multiple partnerships simultaneously, from a computational perspective. We study when the nucleolus of a b-matching game can be computed efficiently and when it is intractable to do so. Chapter 2 describes an algorithm for computing the nucleolus of any weighted cooperative matching game in polynomial time. Chapter 3 studies the computational complexity of b-matching games. We show that computing the nucleolus of such games is NP-hard even when every vertex has b-value 3, the graph is unweighted, bipartite, and of maximum degree 7. Finally, in Chapter 4 we show that when the problem of determining the worst off coalition under a given allocation in a cooperative game can be formulated as a dynamic program then the nucleolus of the game can be computed in time which is only a polynomial factor larger than the time it takes to solve said dynamic program. We apply this result to show that nucleolus of b-matching games can be computed in polynomial time on graphs of bounded treewidth

    Satellite surface soil moisture from SMOS and Aquarius: Assessment for applications in agricultural landscapes

    Get PDF
    AbstractSatellite surface soil moisture has become more widely available in the past five years, with several missions designed specifically for soil moisture measurement now available, including the Soil Moisture and Ocean Salinity (SMOS) mission and the Soil Moisture Active/Passive (SMAP) mission. With a wealth of data now available, the challenge is to understand the skill and limitations of the data so they can be used routinely to support monitoring applications and to better understand environmental change. This paper examined two satellite surface soil moisture data sets from the SMOS and Aquarius missions against in situ networks in largely agricultural regions of Canada. The data from both sensors was compared to ground measurements on both an absolute and relative basis. Overall, the root mean squared errors for SMOS were less than 0.10m3m−3 at most sites, and less where the in situ soil moisture was measured at multiple sites within the radiometer footprint (sites in Saskatchewan, Manitoba and Ontario). At many sites, SMOS overestimates soil moisture shortly after rainfall events compared to the in situ data; however this was not consistent for each site and each time period. SMOS was found to underestimate drying events compared to the in situ data, however this observation was not consistent from site to site. The Aquarius soil moisture data showed higher root mean squared errors in areas where there were more frequent wetting and drying cycles. Overall, both data sets, and SMOS in particular, showed a stable and consistent pattern of capturing surface soil moisture over time

    A model of diffuse Galactic Radio Emission from 10 MHz to 100 GHz

    Full text link
    Understanding diffuse Galactic radio emission is interesting both in its own right and for minimizing foreground contamination of cosmological measurements. Cosmic Microwave Background experiments have focused on frequencies > 10 GHz, whereas 21 cm tomography of the high redshift universe will mainly focus on < 0.2 GHz, for which less is currently known about Galactic emission. Motivated by this, we present a global sky model derived from all publicly available total power large-area radio surveys, digitized with optical character recognition when necessary and compiled into a uniform format, as well as the new Villa Elisa data extending the 1.4 GHz map to the entire sky. We quantify statistical and systematic uncertainties in these surveys by comparing them with various global multi-frequency model fits. We find that a principal component based model with only three components can fit the 11 most accurate data sets (at 10, 22, 45 & 408 MHz and 1.4, 2.3, 23, 33, 41, 61, 94 GHz) to an accuracy around 1%-10% depending on frequency and sky region. Both our data compilation and our software returning a predicted all-sky map at any frequency from 10 MHz to 100 GHz are publicly available at http://space.mit.edu/home/angelica/gsm .Comment: Accuracy improved with 5-year WMAP data. Our data, software and new foreground-cleaned WMAP map are available at https://ascl.net/1011.01

    From Fertilisation to Implantation in Mammalian Pregnancy-Modulation of Early Human Reproduction by the Endocannabinoid System.

    Get PDF
    There is an increasing recognition that the endocannabinoid system is the crucial cytokine-hormone system regulating early human pregnancy. The synchronous development of the fertilized embryo and the endometrium to ensure timely implantation has been shown to be one of the pivotal steps to successful implantation. This development is thought to be regulated by a finely balanced relationship between various components of the endocannabinoid system in the endometrium, the embryo and the Fallopian tube. In addition, this system has also been shown to be involved in the regulation of the development and maturation of the gametes prior to fertilization. In this review, we will examine the evidence from animal and human studies to support the role of the endocannabinoid system in gametogenesis, fertilization, implantation, early pregnancy maintenance, and in immunomodulation of pregnancy. We will discuss the role of the cannabinoid receptors and the enzymes involved in the synthesis and degradation of the key endocannabinoid ligands (e.g., anandamide and 2-arachinoylglycerol) in early reproduction
    corecore